
Pattern Recognition 46 (2013) 24–37
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m

bennam

(A.A. E
journal homepage: www.elsevier.com/locate/pr
An efficient 3D face recognition approach based on the fusion of novel local
low-level features
Yinjie Lei n, Mohammed Bennamoun, Amar A. El-Sallam

School of Computer Science and Software Engineering, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
a r t i c l e i n f o

Article history:

Received 19 March 2012

Received in revised form

27 June 2012

Accepted 29 June 2012
Available online 7 July 2012

Keywords:

3D face recognition

3D geometric feature

SVM

Feature-level fusion

Score-level fusion
03/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.patcog.2012.06.023

esponding author. Tel.: þ61 8 64882715.

ail addresses: yinjie@csse.uwa.edu.au (Y. Lei),

ou@csse.uwa.edu.au (M. Bennamoun), elsalla

l-Sallam).
a b s t r a c t

We present a novel 3D face recognition approach based on low-level geometric features that are

collected from the eyes-forehead and the nose regions. These regions are relatively less influenced by

the deformations that are caused by facial expressions. The extracted features revealed to be efficient

and robust in the presence of facial expressions. A region-based histogram descriptor computed from

these features is used to uniquely represent a 3D face. A Support Vector Machine (SVM) is then trained

as a classifier based on the proposed histogram descriptors to recognize any test face. In order to

combine the contributions of the two facial regions (eyes-forehead and nose), both feature-level and

score-level fusion schemes have been tested and compared. The proposed approach has been tested on

FRGC v2.0 and BU-3DFE datasets through a number of experiments and a high recognition performance

was achieved. Based on the results of ‘‘neutral vs. non-neutral’’ experiment of FRGC v2.0 and ‘‘low-

intensity vs. high-intensity’’ experiment of BU-3DFE, the feature-level fusion scheme achieved

verification rates of 97.6% and 98.2% at 0.1% False Acceptance Rate (FAR) and identification rates of

95.6% and 97.7% on the two datasets respectively. The experimental results also have shown that the

feature-level fusion scheme outperformed the score-level fusion one.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past two decades, 2D face recognition has been one of
the most important and attractive research areas in computer
vision [1,2]. However, pose and illumination variations have been
the dominant factors which have hindered many practical appli-
cations of 2D face recognition systems. In order to overcome these
limitations and inherent drawbacks, many researchers turned to
3D or surface facial information which is now commonly believed
to have the potential to achieve a greater recognition accuracy
than just 2D [3,4].

3D face recognition algorithms can be classified under differ-
ent categories, e.g. according to the modality used, e.g. multi-
modal (RGB-D) vs. just 3D depth. Similarly to 2D, 3D face
recognition algorithms can also be categorized into global-based,
region-based and their hybrid-based (hybrid between global and
local). Global recognition algorithms extract features AKA repre-
sentations from the entire face. An example was proposed in [5],
which extracts Gabor features from facial range images. However,
one of the main challenges of 3D face recognition is the effect of
facial expressions on the robustness and recognition accuracy.
ll rights reserved.
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Global features are considerably affected by facial expressions.
This contributed to the emergence of local-feature based algo-
rithms, which commonly extract local features from the rigid
parts of the face that are the least affected by facial expressions.
A typical example in this category was proposed in our previous
work [6], which showed that the nose and eyes-forehead regions
contain reliable discriminating information for 3D face recogni-
tion. Hybrid-based approaches fuse global and local features/
representations in order to enhance the recognition performance.
Al-Osaimi et al. [7] proposed an expression-robust 3D face
recognition algorithm which integrates local and global geome-
trical cues in a single compact representation of a facial scan.
However, it was revealed to be hard to determine the weights of
the global and local contributions when combining the two
representations. To the best of our knowledge there is no existing
theoretical work to prove that the integration of the two repre-
sentations can definitely achieve better recognition results. On
that basis, we opted to just use local based representations in this
research.

Furthermore, in order to match/recognize two 3D surfaces
which are defined in different coordinate systems, two major
approaches are proposed. The first one requires the registration of
the query (probe) surface to the reference (gallery) surface. One
typical example is based on the Iterative Closest Point (ICP)
algorithm [8,9] or one of its variants [10]. The ICP error has been
used as a similarity measure to select the best matching surface
www.Matlabi.ir 
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for recognition. However, the ICP itself, as opposed to other
algorithms, does not require any feature extraction or projection
onto a higher dimensional space. It uses the whole surface, which
makes it computationally expensive. It also sometimes fails
because it does not converge to a global minimum. Another
example is to use Principal Component Analysis (PCA) based
approaches [11], which has also been extensively used in the
2D domain [12,13]. However, PCA-based approaches require a
prior accurate fine registration. A second type of approaches to
match/recognize two 3D surfaces defined in different coordinate
systems is based on object-centric surface representations [14,15]
which are used in an attempt to represent a 3D surface by a set of
coordinate-independent features to eliminate the effect of the
different coordinate systems. Consequently, one is able to develop
statistical models which are learned from the features collected
from the 3D surfaces of a training set to recognize any novel
input. In order to build these statistical models, machine learning
techniques have received increasing attention because of their
great discriminating performance. On that basis, we propose a
novel 3D face recognition approach based on the fusion of region-
based low-level geometric features which are propagated to a set
of SVM classifiers to perform face recognition.

The paper is organized as follows. Section 2 describes the
related works and motivations. In Section 3, we provide the
details of our proposed approach. In Section 4, extensive experi-
ments are presented along with discussions. Finally, conclusions
are given in Section 5.
2. Related work and overview

2.1. Related work

In its early year, most 3D face recognition approaches were
based on global face representation/matching. Hesher et al. [16]
presented a PCA-based approach to compute eigenvectors from
3D facial range images. Then a nearest neighbor classifier was
used for identification. Achermann and Bunke [17] explored a 3D
version of Hausdorff distance for 3D face recognition. They first
computed two global facial representations which were based on
point sets and voxel arrays respectively. 3D Hausdorff distances
were then used as similarity measures for matching two faces.
Later work showed that region-based 3D face recognition
approaches perform better in achieving robustness under facial
expressions. Chang et al. [18] segmented the 3D face into multiple
sub-regions. The sub-regions which are located around the nose
were matched individually and their matching scores were
combined to determine the final recognition results. Faltemier
et al. [19] also presented a region based method. In their work, a
committee of facial regions were extracted and matched inde-
pendently, and the final matching score was fused from the
corresponding regions. They stated that the highest level of 3D
face recognition had been achieved from combining 28 small
regions. Zhong et al. [20] divided a 3D face into upper and lower
regions, and used only the upper region without the mouth.
Gabor filters were applied to extract features, and the centers
from the filter response vectors were then learned by K-means
clustering. Finally, the recognition results were obtained using a
nearest neighbor classifier which was based on a learned visual
codebook representation. Mian et al. [6] proposed an approach
which automatically segmented the 3D face into different regions.
A spherical face representation (SFR), scale-invariant feature
transform (SIFT) based matching and a modified version of ICP
algorithm were combined to achieve an expression robust
2Dþ3D face recognition. Queirolo et al. [21] presented an
approach which used a simulated annealing-based algorithm for
facial range image registration and measured the similarity of two
faces using a Surface Interpenetration Measure (SIM). Four SIM
values which correspond to four respective facial regions were
then combined to obtain the final recognition results.

Many of the existing 3D face recognition approaches used
high-level 3D facial features/representations, which were argu-
ably insensitive to expression variations. Mian et al. [22] proposed
a method to extract features around the neighboring areas of
detected keypoints. These keypoints were defined as the areas of
high shape variations and were extracted of a high repeatability.
By fusing the 3D keypoint features with 2D SIFT features, they
obtained 96.1% identification rate and 98.6% verification rate
respectively on the FRGC v2.0 dataset. Wang et al. [23] developed
a fully automatic 3D face recognition system using three types of
local high-level features extracted from a Signed Shape Difference
Map (SSDM) which was computed between two aligned 3D faces.
Then a boosting algorithm was applied to select the most
discriminative features to build three kinds of strong classifiers.
They achieved a high recognition of 97.9% for verification and
above 98% for identification on the FRGC v2.0 dataset. Berretti
et al. [24] proposed a 3D face recognition system which partitions
a 3D face into a set of isogeodesic stripes. Then a descriptor
named 3D Weighted Walkthroughs was used to represent such
strips, and a graph-based matching algorithm was used to match
a pair of faces. Compared with high-level features/representa-
tions, the low-level geometric features provide less computa-
tional cost and are more reliable to represent the shape
distribution of a 3D surface. Chua et al. [25] proposed a point-
signature based method to represent the rigid regions of a 3D
facial surface. Li et al. [26] proposed a robust 3D face recognition
approach using a Sparse Representation for local geometric
features and a pooling and ranking scheme was applied to choose
higher-ranked expression-insensitive features. Gupta et al. [27]
proposed an approach which automatically detected 10 anthro-
pometric fiducial points using 2D and 3D face data. A stochastic
pairwise method was used to calculate the 3D Euclidean and
geodesic distances between all of the 10 points to perform 3D face
recognition.

A large part of 3D biometric approaches are devised based on the
registration between 3D surfaces using the Iterative Closest Point
(ICP) algorithm or one of its modified versions. Some of the registra-
tion-based approaches achieve a satisfactory accuracy with 3D face,
facial expression and ear recognition. However, these recognition
approaches rely on brute force matching which affects their matching
speed especially when the gallery size is large. In order to avoid brute
force matching, an alternative is to use machine learning algorithms
which train a set of statistical models, and recognize a novel input
based on such models. Compared with brute force matching, machine
learning based approaches provide efficient solutions to deal with a
gallery of large scale. Hu et al. [28] used a geometric point distance
based method for non-frontal facial expression recognition. They
tested five different classifiers on the BU-3DFE dataset, and the
highest recognition result was obtained using SVM. Sun et al. [29]
investigated an efficient 3D dynamic facial expression recognition
approach by establishing vertex correspondences across frames. They
also proposed a spatiotemporal Hidden Markov Model (HMM) to
learn the spatial and temporal information of a face. Based on their
experimental results on a 3D dynamic face dataset, BU-4DFE, their
proposed approach outperformed the approaches which use static 3D
facial models. Maalej et al. [30] proposed a 3D facial expression
recognition approach based on the shape analysis of the local facial
patches. Their shape analysis algorithm computed the length of the
geodesic path between local facial patches using a Riemanian frame-
work. Besides, both SVM and multiboosting were used as classifiers,
and they achieved 97.75% and 98.81% recognition rates respectively
on the BU-3DFE dataset. Although machine learning techniques have
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been extensively studied in 3D facial expression recognition, their
applications to the case of 3D face recognition is still in its infancy.
This paper attempts to avoid brute force matching by using an SVM-
based approach to perform 3D face recognition.
2.2. Overview of the proposed approach

In this paper, we first divide a 3D face into three different regions
according to their distortions under facial expressions. We opted for
the following face subdivision: rigid (nose), semi-rigid (eyes-fore-
head) and non-rigid (mouth) regions as shown in Fig. 2. In order to
eliminate the effect of facial expression, we only take into account the
rigid and semi-rigid regions. From each of these regions, we extract
local surface descriptors. These descriptors are fused at the feature-
level and at the score-level (Sections 3.5 and 3.6 for more details), and
their recognition results are compared in Section 4.6.

We adopt low-level geometric features (Section 3.3.1) rather
than high-level ones for the following reasons. First, the extrac-
tion of low-level features is computationally inexpensive invol-
ving only some basic computations e.g. distances and angles. On
the contrary, high-level features usually require complicated
mathematical transformations. Furthermore, every point on a
3D surface contributes equally to low-level features. This prop-
erty enables that the magnitude of the change of these features to
vary according to the magnitude of the change of the surface
geometric distribution. Lastly, low-level features are invariant to
scale, rigid motion and other similarity transformations as
explained in Section 3.3. This property makes low-level features
invariant to pose variations and independent of the coordinate
systems.
Fig. 1. An illustration of facial scan preprocessing, cropping and pose correction. The le

points. The right column shows the two respective processed range images. The surfaces

pose has also been corrected. In addition, the nosetip is detected and shifted to the ce
We devise four types of region-based low-level geometric
features (see Figs. 3 and 4) and apply them to 3D face recognition.
Features that are collected from the same region are quantized
into four types of histograms with a fixed dimension. Then those
four histograms are concatenated to form a region-based descrip-
tor (Section 3.3.2). In the rigid and semi-rigid facial regions, the
extracted descriptors of the face of an individual at different
instances are robust to facial expressions. Therefore by mapping
such descriptors of a face, which is subject to various facial
expressions, into a higher-dimensional feature space, the descrip-
tors which belong to the same individual will cluster. We
introduce SVM to find a hyper-plane in the higher dimensional
space, which is then used to separate the cluster belonging to one
individual from the others.

In order to combine the contributions of the rigid and semi-
rigid facial regions, we apply both feature-level and score-level
fusion. For feature-level fusion, we simply concatenate the two
region-based descriptors/feature vectors and propagate them to
SVMs for training and classification. For the score-level fusion,
two region-based SVMs are trained separately, and their outputs
are combined to obtain the final recognition results. In our
approach, a likelihood normalization method is applied to opti-
mally determine the combination weights.
3. Proposed approach

3.1. Facial scan preprocessing

The two largest available public human face datasets are used
in this paper. They are the FRGC v2.0 (Face Recognition Grand
ft column shows two raw facial scans with some obvious holes, spikes and outlier

have been smoothed to remove the spikes, and interpolated to fill in the holes. The

nter of the image.
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Challenge) dataset [31] and the BU-3DFE (Binghamton University
3D Facial Expression) dataset [32]. Section 4.1 provides a detailed
description of these two datasets.

The 3D facial scans in FRGC v2.0 are represented by dense
pointclouds and are stored in x, y and z matrices without any pre-
processing. Some of the scans come with spikes and holes. In
order to remove the spikes, we reduce/smooth the values of all
three coordinates (x, y and z) of the outlier vertices according to
the statistical information of the neighboring vertices and then
smooth the whole mesh using a mean value filter. We then apply
a bi-cubic interpolation along the three coordinate matrices to fill
Fig. 2. Region based 3D facial representation. The 1st row shows the binary masks

respectively. The 2nd and 3rd rows illustrate some extracted regions taken from the B
in the holes which often appear in the eye-brows or mouth areas.
Since the original pointclouds are sampled at unordered (non-
uniform) locations, the next pre-processing step is to build a
uniform sampling pattern of the 3D facial scans in order to impose
a fixed correspondence during the collection of the features (Section
3.3) across the different facial scans. This is accomplished by
converting pointclouds to range images, which is a simple way of
imposing a uniform sampling pattern on the 3D facial surfaces [26].
The range images are computed by interpolating at the integer x and
y coordinates along the horizontal and vertical index respectively
and determining the corresponding z coordinate as a pixel value.
which are used to detect the semi-rigid, rigid and non-rigid regions of a face

U-3DFE dataset. The last two rows are extracted from FRGC v2.0 dataset.
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The pixels in the range image are then re-sampled at a distance of
1 mm along both the x and y directions. A Gaussian filter is used
after that to further smooth the range images.

In our previous work, we proposed an algorithm to crop facial
scans and correct their pose to frontal views [6], which achieved
sufficient accuracy. In our proposed approach, face cropping and
pose correction are important for the facial regions which are
extracted by means of pre-defined binary masks. The masks are
developed by detecting the nosetip as a landmark. Thus, we first
use a novel training free nosetip detection algorithm proposed in
our previous work [33]. The range images are shifted to bring the
nosetip to the center which is then set as the origin of the face
coordinate frame, and follow the subsequent steps which are fully
described in [6] and briefly described below. The detected nosetip
is used to crop the 3D facial scans by eliminating the outlier
points which are located at a distance of more than 80 mm from
the nosetip. Pose correction is obtained by applying PCA on the
cropped points to find their principal directions. This step is
iterated until there is no further pose change taking place.
Bi-cubic interpolation is then used to fill in the holes which
occasionally appear during the pose correction caused by self-
occlusion.

Note that the 3D facial models of BU-3DFE have already been
preprocessed, cropped and pose corrected by the provider. Thus
we only need to detect their nose tips and resample the facial
scans into range images to guarantee the correspondence needed
when extracting features from the different faces. Fig. 1 illustrates
some of the pre-processing results. The left column shows two
raw data from FRGC v2.0 dataset, and their corresponding
processed range images are shown in the right column.
3.2. Region based 3D facial representation

As mentioned in Section 2.2, a facial scan is divided into
different expression-sensitive regions. Both psychological find-
ings and the 3D face recognition literature reported that the
mouth area is the most affected under facial expression while the
nose area is the least affected one. Based on that, we crop the nose
(rigid region), the eye-forehead (semi-rigid region) and the mouth
(non-rigid region) areas from the 3D facial scan for further
processing. Many of the existing 3D face recognition approaches
eliminate the non-rigid region in order to cope with facial
expressions. Other approaches e.g. [21,6], provide a method to
optimally decompose a 3D facial scan into different regions e.g. by
detecting landmark feature points such as the inner and outside
eye and mouth corners. Based on empirical results performed to
assess the activity of each region, we devised three binary masks
(shown in the top row of Fig. 2) to crop the facial regions. As
shown in this figure (from left to right), the results of the
decomposition of our binary masks are commensurate with the
semi-rigid, the rigid and the non-rigid regions respectively.1 Some
examples of cropped facial regions are also shown in Fig. 2. In
order to reduce the size of the extracted features, the cropped
regions are sampled at uniform ðx,yÞ intervals (2 mm in our case)
and only the seed points are kept.

There are two advantages of using binary masks. First, com-
plicated algorithms for landmark feature points detection are not
required which results in a reduced computational cost. In
addition, the cropped regions of different 3D facial scans will
always contain the same number of vertices, which results in
feature vectors of the same dimension (one of the requirements
of SVM).
1 The code to generate the binary masks is available on the first author’s

website at http://www.csse.uwa.edu.au/�yinjie/.
Our subsequent aim (Section 3.3) is to extract region-based
low-level geometric features from 3D facial scans. For that
purpose, we first converted the cropped range/depth informa-
tion into pointclouds. The range image pixels are turned into
ðx,y,zÞ matrices, where x and y correspond to the vertical and
horizontal indexes and the z value is taken from the corresponding
depth value.

3.3. Extraction of 3D geometric feature functions

The low-level geometric features are directly computed from
the spatial relationships of the 3D vertices without any compli-
cated mathematical transformation [34]. The advantage of using
spatial relationships can be explained as follows. Face pose
variations or other rigid motions can only change the absolute
spatial positions of the 3D vertices on a facial surface. The relative
local spatial relationships among those vertices remains unaf-
fected. Consequently, low-level geometric features which mea-
sure distances and angles between 3D vertices can be expected to
remain invariant under pose variation or other similar rigid
transformations. There are three qualities of a ‘‘good’’ feature
representation. Namely, unambiguity, uniqueness and robustness
[35]. A feature is unambiguous if different 3D faces yield different
feature representations. A feature is unique if a 3D face is
represented by a unique feature representation. Lastly, a feature
is robust to facial expression if the magnitude of any variation
caused by facial expression is much less than the magnitude of
the change from one individual to another. In the subsection
below, we propose four low-level geometric features which hold
all of these qualities for the sake of an accurate and robust 3D face
recognition.

3.3.1. Proposed 3D geometric feature functions

We represent each of the three facial regions (see Section 3.2)
using multiple spatial triangles where one vertex is selected using
the nosetip and the two other vertices are randomly picked from
the corresponding local surface region. The example in Fig. 3 is
shown on the rigid region. From these triangles, we develop four
types of geometric features defined as follows:
1.
Fig
leve

ver

and
A: corresponds to the angle between the two lines determined
by the two random vertices and the nosetip.
2.
 C: is defined as the radius of the circumscribed circle to the
triangle determined by the two random vertices and the
nosetip.
. 3. An illustration of one of the triangles used for the extraction of our low-

l geometric features. The triangle is defined by the nosetip and two random

tices picked from the selected facial region. The location of the nosetip is stored

used for all of the three facial regions.
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3.
 D: is defined as the distance of the line between the two
random vertices.
4.
 N: is defined as the angle between the line defined by the two
random vertices and the z-axis.

An illustration of the four features is shown in Fig. 4. For the sake
of clarity, we shifted the z-axis to one of the random vertices. The
main strengths of our features can be summarized as follows:
First, they are quick to compute and intuitively easy to under-
stand. Second, these features vary dramatically between different
individuals (unique) as proved in the following subsection. Third,
our features are insensitive to facial expressions of the same
individual (robust) as also proved in the following subsection.
However, since two of the vertices which are used to define our
triangles are randomly selected from the facial regions, the
entries of the feature vector of two facial scans belonging to the
same individual will not be in the same corresponding order. As a
result, it is difficult to compare feature vectors of the same region.
Hence we need to transform those unordered feature vectors into
a comparable representation.
3.3.2. Proposed feature vector

Once the four types of features have been extracted, the
following step is performed to overcome the random order
problem mentioned in the previous subsection. In this work, we
normalize the entries of each feature vector into ð�1,þ1Þ and
quantize them into histograms by counting how many entries fall
into each of m bins.

We normalize and quantize each of the four vectors into
histograms for the following reasons. First, we use a stochastic
pairwise method to collect the four features. Therefore, there is no
one-to-one correspondence of the entries of the feature vectors of
two facial scans. Therefore, normalizing and quantifying feature
vectors into histograms provides a better mean to describe the
geometric distribution of the local surface. Furthermore, since the
histograms are of the same dimension, the similarity between
two surfaces can be computed by comparing their corresponding
histograms. Second, because the size of the collected feature
vectors is very large, we must compress them in order to reduce
both the computational and the storage costs. For instance, with a
cropped facial region of n vertices, n/2 vertices will still remain
after using our seed-points resampling scheme (Section 3.2).
Based on our spatial triangle representation, ðn2�2nÞ=8 triangles
can be generated in total. Consequently, the dimension of each of
the four feature vectors will also equal ðn2�2nÞ=8. Whereas the
dimension of the histogram is only m (number of bins of the
histogram), which is much less than ðn2�2nÞ=8. In addition,
compared with those traditional feature compression algorithms,
such as PCA, the histogram (with an optimal choice of m) is a
‘‘complete’’ representation which does not lose as much surface
information.

Another important issue is to determine the histogram dimen-
sion. If the dimension is too large, the constructed feature
histograms will be too sensitive to noise, expression or other
variations. On the other hand, if the dimension is too small, all the
elements will accumulate in some bins and thus yield to an
insufficient discriminating information. Since it is difficult to
theoretically determine the dimension, we empirically chose a
set of dimensions and experimentally selected the optimal one
(Section 4.2).

To demonstrate the robustness of our histogram descriptor, an
illustration is provided in Fig. 5. We generate the four proposed
histogram descriptors (all with a dimension of 180) from the rigid
regions (nose) of two individuals, each under four facial expres-
sions. This results in the generation of 16 histograms for each
individual. The ones plotted in blue correspond to the first
individual and the red ones correspond to the second individual.
We can observe that for each individual, the histograms of the
same feature are similar in terms of distribution. This is better
illustrated in Fig. 6, where the histograms of the two individuals
according to the different feature types are plotted together. For
each feature type, it can be seen that the histograms belonging to
the same individual are very similar, which results in a unique
signature to discriminate one individual from another.

Finally, we concatenate all of the four histograms which are
generated from the same region to form a region-based histogram
descriptor. Consequently, a face can be represented by a rigid
region histogram descriptor and a semi-rigid region histogram
descriptor, each with a dimension of m�4.
3.4. Support vector machine classification

In this work, we adopt SVM for classification for its excellent
discriminating performance. The basic idea of SVM is to map the
feature vectors into a higher-dimensional space and then to find
an optimal hyper-plane to separate one cluster from another by
calculating the maximal margin. We first explain some relevant
SVM concepts in this section.
3.4.1. The binary classification problem

SVM is a maximal margin classifier which performs classifica-
tion by finding an optimal hyper-plane that maximizes the
distance to the closest points in a higher-dimensional space. It
was first designed to solve binary classification problems. Assume
that we have q labeled training samples xkARD, k¼ 1, . . . ,q,
which belong to two classes ykAðþ1,�1Þ. SVM tries to find a
hyper-plane by solving the following optimization problem

min
o,b,x

1

2
oToþC

Xl

i ¼ 1

xi

 !

s:t: yiðoTfðxiÞþbÞZ1�xi, xiZ0, ð1Þ

where C40 is a penalty parameter of the error term, o is the
coefficient vector, b is a constant and xiZ0 is a parameter for
handling non-separable data. In order to facilitate separation,
each data is mapped by a function fðxiÞ into a higher-dimensional
space. In practice, the function fðxiÞ is written in a form of a
kernel function Kðxi,xjÞ ¼fðxiÞ

TfðxjÞ, which calculates the dot
product of two points in such a space. In our work, the non-linear
Gaussian radial basis function (RBF) kernel is chosen because it



Fig. 5. The four proposed histogram descriptors collected from a rigid region of two individuals (each is under four different facial expressions). Notice that all of the

histograms belonging to the same individual are very similar, whereas those of different individuals are dissimilar. A clearer illustration is given in Fig. 6.
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has been shown to give better results compared to the linear and
polynomial kernels [36]

Kðxi,xjÞ ¼ expðgJxi�xjJÞ, g40, ð2Þ

where the kernel parameter g along with the penalty parameter C

need to be determined beforehand. The goal is to separate the
data from two classes by a hyperplane that makes the distance to
the support vectors maximized

f ðxÞ ¼o � xþb, ð3Þ

o¼
X
8xi A S

aiyixi, ð4Þ



Fig. 6. An illustration to compare the histograms of the two individuals in Fig. 5 according to their types. It clearly demonstrates that the histograms which correspond to

the same individual cluster together.
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where S is a set of support vectors, and ai is a trained weight of the
corresponding support vectors. For each SVM, the hyperplane is
calculated and stored to classify any novel input data using two
classification schemes, one is a distance-based, and the other one is a
probability-based.
1.
 Distance-based: by computing the sign of d(x) which is a
function of the right side of Eq. (3) as

yðxÞ ¼
þ1 signðdðxÞÞ ¼ þ1

�1 signðdðxÞÞ ¼ �1

(
, ð5Þ

dðxÞ ¼
o � xþb

JoJ
, ð6Þ

to perform binary classification, and the sign of d(x) is the
classification label of x, and 9dðxÞ9 is the distance from x to the
hyperplane. Intuitively, the farther distance from the data to
the hyper-plane, i.e. a larger 9d9, provides a more reliable
classification result.
2.
 Probability-based: by mapping the real values of f A ½�1,þ1�
onto probabilities, which can be obtained by training a
sigmoid function which is defined as

Pðy¼ þ19f ðxÞÞ ¼
1

1þexpðAf þBÞ
ð7Þ

where P is the mapped probability, y is the actual label of the
input data, and A and B are two parameters estimated using
the training set. The training set is fed back to the obtained
SVMs, and a maximum likelihood estimation method [37] is
applied on the output f i and their actual labels yi to estimate a
pair of ðA,BÞ which is used in the sigmoid function. For binary
problems, a larger P indicates that the input data has a higher
probability and will be classified as þ1, and vice versa.

There is no theoretical analysis provided to compare the two
methods, and it is hard to tell which one performs better than the
other. However, the probability-based scheme provides a rela-
tively more intuitive results since all its outputs are normalized
between 0 and 1. In this paper the distance-based method
has been applied to the feature-level fusion face recognition
(Section 3.5) and the probability-based method has been
used for the score-level fusion for the reasons explained below
(Section 3.6).
3.4.2. Multi-class classification problem

Since SVM is originally designed for binary classification
problems, there are two methods that are commonly used to
solve multi-class problems: (1) The one-vs-all method, in which k

SVMs are trained to classify k classes, and each SVM is responsible
for the separation of the samples of one class (labeled þ1) from
all the other samples of the other classes of the training set
(labeled �1). (2) The one-vs-one method, in which each SVM is
responsible for classifying a pair of classes. The SVM is trained by
treating the samples belonging to one class as positive (labeled þ1)
and those belonging to the other class as negative (labeled �1). As a
result there are kðk�1Þ trained SVMs, where k is the number of
classes of the training set. Recent literature [36] shows that the two
methods yield similar performance with respect to the classification
quality. However, with respect to the training effort, the one-vs-all
method only trains k SVMs compared with kðk�1Þ that are trained by
one-vs-one method. In this work, since we deal with a large
classification problem, we take the one-vs-all method as it achieves
a faster speed and a comparable performance to the one-vs-one
method.
3.5. Feature-level fusion

We represent a 3D face by a semi-rigid region and rigid region
histogram descriptors. How to fuse the recognition contributions
from the two is an important issue. It is commonly believed that
feature-level fusion can achieve a better performance than score-
level fusion. However, the of feature fusion research is still in its
infancy, and some existing work showed that score-level fusion
provides better results [22]. In this work we present both feature-
level and score-level fusion schemes. In this section, we first
describe our feature-level fusion scheme.
3.5.1. Training

As feature-level fusion requires different features to be fused
directly, in our case we concatenate the two region-based
histogram descriptors of a 3D face into one feature vector to be
fed as input to SVM. Then q SVMs are trained where q is the total
number of individuals. Since the RBF kernel is selected in our case,
the parameters C and g need to be determined beforehand as
mentioned in Section 3.4.1. We adopt a grid-search algorithm
with 5-fold cross-validation to find the best pair of C and g.
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The pair which provides the minimum error during the cross-
validation is selected.

3.5.2. Classification

We use a distance-based classification scheme because of its
reduced training effort. Let x be a probe facial scan, the distance
dk(x) is the kth element of the similarity vector d

!
ðxÞ. Such

distance value is computed according to Eq. (6) from the kth
SVM, which is used to recognize the kth individual. Each vector is
normalized on a scale of 0–1 using the min–max rule

d
!0
ðxÞ ¼

d
!
ðxÞ�minð d

!
ðxÞÞ

maxð d
!
ðxÞ�minð d

!
ðxÞÞÞ�minð d

!
ðxÞ�minð d

!
ðxÞÞÞ

, ð8Þ

where d
!0
ðxÞ stands for the normalized probability vector. The

operators minð d
!
ðxÞÞ and maxð d

!
ðxÞÞ produce the minimum and

maximum values of the vectors respectively.
For verification, given a classification threshold Z

Accept if d0kðxÞþZ40

Reject if d0kðxÞþZr0: ð9Þ

If the threshold Z is raised, the verification increases, but the
false acceptance rate also increases, and vice versa.

For identification, the class label y(x) of x is computed as
follows:

yðxÞ ¼ arg max
1rkrq

ðd0kðxÞÞ, ð10Þ

where q is the number of individuals in the training set. The label
is assigned with the individual which yields the largest d0ðxÞ.

3.6. Score-level fusion

As opposed to feature-level fusion, score-level fusion requires
the training of two sets of SVM, e.g. S-SVMs and R-SVMs which
correspond to the semi-rigid and rigid regions respectively, and
fuse the individual outputs to obtain the final classification
results. Rather than concatenating the descriptors together, the
region-based histogram descriptors are treated individually as
feature vectors to train their corresponding SVMs. Then we adopt
a weighted fusion method to optimally find their corresponding
fusion weights of S-SVMs and R-SVMs. We use the probability-
based scheme because the outputs generated from all SVMs are
mapped and normalized between 0 and 1. The details of the
score-level fusion are given in this section.
3.6.1. Training

Based on our region-based histogram descriptors, we train
S-SVMs and R-SVMs which correspond to the semi-rigid and rigid
regions respectively. The training process for both S-SVMs and
R-SVMs is the same, therefore in the following we do not make
any distinction between the two. The training also results in q

SVMs to recognize q individuals. The outputs of each SVM are
mapped and normalized into probabilities which take values
between (0, 1) according to Eq. (7). As a result, a pair of sigmoid
function parameters ðAk, BkÞ, k¼ 1, . . . ,q, need to be estimated for
each SVM as follows:
1.
 The training set is used to train q SVMs, and the grid-search under
5-fold cross-validation is used to find the optimal C and g.
2.
 Feed all the labeled samples in the training set as inputs into
the q SVMs, and use the kth SVM to generate a set of ðf i,yiÞk,
where i is the ith sample in the training set, and fi is the
decision value computed by Eq. (3) and yi stands for the
estimated label which takes a value of either �1 or þ1.
3.
 A maximum likelihood estimation algorithm [38] is performed
on ðf i,yiÞk to estimate the pair of ðAk,BkÞ.
4.
 Repeat step 2 and step 3 to find each of the q pairs of ðA,BÞs. As
a result, q sigmoid functions are generated with their corre-
sponding ðA,BÞ.

The above steps can be applied to train both S-SVMs and R-SVMs and
their corresponding sigmoid functions. Consequently, for a probe
facial scan x, two probability vectors p

!s
ðxÞ ¼ ½ps

1ðxÞ, . . . ,p
s
kðxÞ,

. . . ,ps
qðxÞ� which corresponds to S-SVMs and p

!r
ðxÞ ¼ ½pr

1ðxÞ, . . . ,
pr

kðxÞ, . . . ,p
r
qðxÞ� which corresponds to R-SVMs are computed and

mapped by their corresponding sigmoid functions. Each of the vectors
contains q elements with a sum of 1. At the location k, a larger value
suggests a higher probability for the probe to be classified into the kth
class. However, the outputs obtained by S-SVMs are more reliable
than those obtained by R-SVMs, and this suggests to assign a different
weight to each of them for fusion.

Let w
!s

and w
!r

be the weight vectors for the probability vectors
p
!s
ðxÞ and p

!r
ðxÞ respectively. Each has q class-based elements:

w
!s
¼ ½ws

1, . . . ,ws
k, . . . ,ws

q� and w
!r
¼ ½wr

1, . . . ,wr
k, . . . ,wr

q�. We use a
likelihood normalization method [37] to estimate w

!s
and w
!r

.
Assume that there are n labeled samples ðx1, . . . ,xi, . . . ,xnÞ in the

training set, by feeding all the samples into S-SVMs and R-SVMs, two
sets of probability vectors are obtained, e.g. p

!s
ðxiÞ and p

!r
ðxiÞ, where

i¼ 1;2, . . .n. ps
kðxiÞ and pr

kðxiÞ indicate the probabilities of the ith
sample to be classified into the kth class obtained by S-SVMs and
R-SVMs respectively. The class-based elements of w

!s
and w
!r

are
computed by ws

k ¼
Pn

i ¼ 1

Pq
k ¼ 1 ps

kðxiÞ=q �
Pn

i ¼ 1 ps
kðxiÞ and wr

k ¼Pn
i ¼ 1

Pq
k ¼ 1 pr

kðxiÞ=q �
Pn

i ¼ 1 pr
kðxiÞ. In order to maintain the sum of

the final probability vector to 1, the final weight vector w
!
¼

w1, . . . ,wk, . . . ,wq can be calculated by

wk ¼ws
k=ðw

s
kþwr

kÞ: ð11Þ

As a result, the probabilities computed from S-SVMs and
R-SVMs are fused to obtain the final probability vector

p
!
ðxÞ ¼ w

!
n p
!s
ðxÞþð1�w

!
Þn p
!r
ðxÞ, ð12Þ

where n stands for the inner product operation, and each pk(x) in
the probability vector p

!
ðxÞ ¼ ½p1ðxÞ, . . . ,pkðxÞ, . . . ,pqðxÞ� stands for

the fused probability of the probe to be classified into the
kth class.
3.6.2. Classification

Let x be a probe facial scan, the classification probability vector
p
!
ðxÞ is computed according to Eq. (12).
For verification: given a classification threshold Z

Accept if p0kðxÞ4Z

Reject if p0kðxÞrZ: ð13Þ

For identification: the class label y(x) of x is computed as
follows:

yðxÞ ¼ arg max
1rkrq

ðp0kðxÞÞ, ð14Þ

where q is the number of individuals in the training set. The label
will be assigned with the class which yields the largest p0kðxÞ.
4. Experimental results

We tested our proposed approach with a set of experiments on
FRGC v2.0 and BU-3DFE datasets. In this section, we evaluate our
proposed approach in both identification and verification modes,
and present our recognition results.
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Fig. 7. The average rank-1 RRs and the 95% confidence intervals versus the

histogram dimension using the feature-level fusion of rigid and semi-rigid regions.
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4.1. Datasets description

FRGC is one of the largest available public domain 2D and 3D
human face datasets. The FRGC v2.0 contains 4950 3D facial scans
which are divided into training and validation partitions. The
scans are captured by a Minolta Vivid series 3D scanner. The
training partition contains 943 nearly frontal 3D facial scans
(most of them are with a neutral expression) belonging to 273
individuals. This partition is used in Section 4.2 to select the
optimal histogram dimension. The validation partition includes
4007 (Fall 2003 and Spring 2004) nearly frontal 3D facial scans of
466 individuals. There are 2410 facial scans out of 4007 which are
in neutral expression, and the other 1597 are with non-neutral
expressions. Two experimental subsets have been generated from
the validation partition: (1) the 2410 neutral scans which belong
to 466 individuals are used as a training set and 1000 non-neutral
scans are used as a testing set. This is called ‘‘neutral vs. non-
neutral’’; (2) the 1597 non-neutral scans which belong to 374
individuals are used as a training set and 1000 neutral scans are
used as a testing set. This is called ‘‘non-neutral vs. neutral’’.

BU-3DFE is another important public domain 3D face bio-
metric dataset. It contains images and scans of 100 individuals
(44 males and 56 females) with a large range of variety of age and
ethnic/racial ancestries. Each individual has 25 ear-to-ear 3D
facial scans, only one is in neutral expression and the rest 24
scans with six expressions, namely: Happiness, Anger, Fear,
Disgust, Sadness and Surprise. Each expression has four levels of
expression intensity. 1 and 2 levels are considered as low
intensity while 3 and 4 levels as high intensity. Compared with
FRGC v2.0, BU-3DFE provides a larger range of facial expressions
at different intensities, and it is therefore more challenging when
it comes to 3D face recognition. However, the total number of
individuals of BU-3DFE is currently 100 only, which is very much
less than the 466 individuals in FRGC v2.0. We also generated two
subsets of experiment data from BU-3DFE: (1) for each individual,
we select the low-intensity scans per expression in the training
set and the high-intensity scans are included in the testing set.
This is termed ‘‘low-intensity vs. high-intensity’’; (2) we select the
same number of training samples but with high-intensity per
expression for each individual, and the low-intensity ones are
included in the testing set. This is called ‘‘high-intensity vs. low-
intensity’’. Consequently, both of the two experimental subsets
contain 1200 samples for training and 1200 samples for testing.
4.2. Optimal histogram dimension

In this section, we aim to empirically find the optimal histogram
dimension as described in Section 3.3.2 since this selection affects the
recognition results. Two observations can easily be made. On the one
hand, the larger the dimension of the histogram, the more sensitive is
the recognition to noise, expression, and other variations. On the
other hand, a small dimension will increase the chances of the
histograms to concentrate on some specific bins which makes the
descriptors more insensitive to variations between different indivi-
duals. Consequently, the recognition accuracy is affected.

The experiment is performed on the training partition of FRGC
v2.0 as follows: we first randomly pick 150 individuals (out of
273), and since most of the facial scans in this partition are in
neutral expression we randomly pick 300 scans from the selected
individuals for testing and the rest for training. We conduct 20
experiments by repeating the random selection of training/testing
data described above with histograms with dimensions ranging
from 20 to 220 with an increment of 20. The experiment is run
under the identification mode with the feature-level fusion to
combine the rigid and semi-rigid regions and the average rank-1
Recognition Rates (RRs) and their 95% Confidence Intervals are
reported in Fig. 7.

As illustrated in Fig. 7, the average recognition rates increased
when the dimensions are low (below 80). Then the recognition
rate reached its peak in the range of 180–200. An obvious
decrease of the rates occurred when the dimension of the
histograms was above 220. Based on these observations, in the
following experiments we use the region-based feature histogram
with a dimension of 180.

4.3. Evaluation of the combinations of facial regions

In this work, we divide a facial scan into three regions, namely
non-rigid (N), semi-rigid (S) and rigid (R) which correspond to
mouth, eyes-forehead and nose areas respectively. In order to
overcome the influence of facial expressions, we argue that the
semi-rigid and rigid regions are relatively less sensitive to facial
expressions. In order to validate our argument, a set of experi-
ments are conducted on the validation partition of FRGC v2.0.
First we randomly pick 200 individuals, and all their neutral facial
scans are used for training. Meanwhile, another 500 scans with
expressions which belong to the selected 200 individuals are used
for testing. We conduct 20 experiments based on different
combinations of these three facial regions by repeating the
random selection of training/testing data as described above.
Consequently, seven combinations of facial regions, namely N, S,
R, NþS, NþR, SþR and NþSþR, are generated and tested
individually. The rank-1 RRs and their 95% confidence intervals
are calculated and shown in Fig. 8. Two observations can be
made: (1) The R region slightly outperforms the S region, whereas
the N region is the most unreliable one; (2) The combinations
which comprise the N region (N, NþS, NþR, and NþSþR) yield to
lower rates compared to those without such a region (S, R, and
SþR). The highest average recognition rate and the smallest
confidence interval were obtained with the SþR combination
which exactly validates our argument that the semi-rigid and
rigid regions are less sensitive to facial expressions.

4.4. Evaluation of the combinations of features

In order to investigate the reliability of our proposed low-level
geometric features, a set of experiments were conducted based on
15 different combinations of all the four types of features. As
discussed above, the histogram dimension is also set to 180, and
SþR regions are combined based on feature-level fusion. The
rank-1 RRs and their 95% confidence intervals by repeating 20
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combination of the three facial regions. The feature-level fusion is used to combine

the different regions.

Table 1
The average rank-1 RRs and the 95% confidence intervals combining all of the four

types of low-level geometric features, which are obtained by feature-level fusion

of S and R regions by repeating 20 times the random selection of training/

testing data.

Combinations Rank-1 RRs (%) Confidence intervals (%)

A 80.9 [77.8–84.1]

C 73.8 [69.3–78.3]

D 86.3 [83–89.6]

N 85.1 [82.2–87.9]

AþC 84.8 [80.6–89]

AþD 91.1 [87.4–94.9]

AþN 92.3 [90.2–94.5]

CþD 90.2 [87.8–92.7]

CþN 88.9 [86–91.9]

DþN 90.7 [88.7–92.7]

AþCþD 92.4 [90.3–94.5]

AþCþN 91.6 [89–94.3]

AþDþN 93.7 [91–96.3]

CþDþN 93.2 [90.7–95.8]

AþCþDþN 94:3 ½92:2296:4�

Table 2
Comparison of the different classifiers. The average rank-1 RRs and their

confidence intervals are also obtained by feature-level fusion of S and R regions

by repeating 20 times the random selection of training/testing data.

Classifiers Rank-1 RRs (%) Confidence intervals (%)

Modified-LDA 77.8 [74.1–81.6]

Polynomial-SVM 81.8 [78.2–85.4]

Linear-SVM 93.7 [91–96.4]

RBF-SVM 94:5 ½91:9297:2�
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times the random selection of training/testing data described in
Section 4.3 are shown in Table 1. These results show that, for a
single feature, the feature D gives the highest performance.
Feature C yields to an inferior performance compared with the
other three. However, the overall best performance is achieved by
combining all four types of features with an average recognition
rate of 94.3%. Based on these experimental results, two observa-
tions can be made. First, the overall recognition rate using any of
the feature types is satisfactory. Furthermore, the highest recog-
nition performance is attributed to the fusion of all four types of
features.

4.5. Comparison of different classifiers

In order to solve the non-linearly separable problem, the
‘‘kernel trick’’ is introduced to map the data from the original
feature space into a high dimensional space, in which the mapped
data can be expected to become more discriminative and separ-
able by a hyper-plane. In order to demonstrate the superiority of
the non-linear SVM, a comparison between a modified LDA
algorithm [39,40] (the modified LDA algorithm resolves the
singularity problem caused by small sample-sized training data
[41,42]) and three SVM-based algorithms (Linear-SVM, Polyno-
mial-SVM and RBF-SVM) is presented in Table 2. All experiments
in this section are performed according to the same experimental
setups of Section 4.3.

The results provided in Table 2 show that all three SVMs
achieve a better performance in terms of average recognition
accuracy and stability (i.e. small confidence intervals) compared
with the modified LDA algorithm mentioned above. Another
observation is that the RBF-SVM slightly outperforms the Lin-
ear-SVM (i.e. a higher average recognition accuracy). This sug-
gests that some of the original non-linearly separable data
become more linearly separable following the mapping onto a
high dimensional space using the RBF kernel, and thus the
recognition accuracy is improved. However, based on our experi-
mental results the Polynomial-SVM is not a suitable choice.

4.6. Recognition results

Cumulative Match Characteristic (CMC) curves from our pro-
posed approach are provided in Fig. 9. Both feature-level and
score-level fusion to combine the S and R regions are tested on
FRGC v2.0 and BU-3DFE. The rank-1 identification rates provided
by the feature-level fusion in the case of ‘‘neutral vs. non-neutral’’
and ‘‘non-neutral vs. neutral’’ of FRGC v2.0 are 95.6% and 96.7%
respectively, which outperform the score-level fusion by 1.2% and
1.4% respectively. The results obtained on BU-3DFE are almost
identical to FRGC v2.0, and the rank-1 identification rates for
‘‘low-intensity vs. high-intensity’’, ‘‘high-intensity vs. low-inten-
sity’’ are 97.7% and 98.7% (in the case of feature-level fusion)
respectively versus 95.3% and 96.9% (in the case of score-level
fusion). These results indicate that feature-level fusion outper-
forms score-level fusion which confirm previous works e.g. [43].

Fig. 10 illustrates the Receiver Operation Curves (ROCs) on the
two datasets. Similar to the identification cases, both feature-level
and score-level fusions combining the S and R regions are also
tested. At 0.1% FAR, when our proposed approach is tested on
FRGC v2.0 it achieves 97.6% and 98.1% in the case of feature-level
fusion for ‘‘neutral vs. non-neutral’’ and ‘‘non-neutral vs. neutral’’
respectively. This outperforms score-level fusion by 1% and 0.9%
respectively. On BU-3DFE, we obtain a feature-level fusion based
verification rates of 98.2% and 99% in the case of ‘‘low-intensity
vs. high-intensity’’ and ‘‘high-intensity vs. low-intensity’’, which
outperform score-level fusion by 0.8% and 0.7% respectively.

Although BU-3DFE is expression-richer than FRGC v2.0, the
recognition results on BU-3DFE slightly outperform the FRGC v2.0
results. The differences in the recognition results occur because of
the following two reasons. The first reason relates to some
incorrect automatic nosetip detection and pose correction of the
FRGC v2.0 facial scans. The results reported throughout this paper
include these facial scans and no intervention was attempted to
correct their pose manually. The performance of the approach can
further be improved by performing an iterative nosetip detection
while pose-correcting the 3D face. A more accurate nosetip
detection will result in a more accurate pose-correction for 3D
faces. The second reason is due to the different sizes of the the
two datasets (number of individuals). The FRGC v2.0 contain 466
individuals in total, whereas the BU-3DFE comprises only 100
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Fig. 9. Face identification results on FRGC v2.0 (first column) and BU-3DFE (second column). The rank-1 identification rates of combining SþR regions by feature-level

fusion on the two most challenging subsets, ‘‘neutral vs. non-neutral’’ of FRGC v2.0 and ‘‘low-intensity vs. high-intensity’’ of BU-3DFE, are 95.6% and 97.7% respectively.

10−3 10−2 10−1 100 10−3 10−2 10−1 100

10−3 10−2 10−1 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Acceptance Rate (log scale)

V
er

ifi
ca

tio
n 

R
at

e

Neutral vs. non−neutral

Feature−level Fusion

Score−level Fusion

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Acceptance Rate (log scale)

V
er

ifi
ca

tio
n 

R
at

e

Low−int.  vs. high−int.

Score−level Fusion

Feature−level Fusion

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Acceptance Rate (log scale)

V
er

ifi
ca

tio
n 

R
at

e

Non−neutral vs. neutral

Feature−level Fusion

Score−level Fusion

10−3 10−2 10−1 1000.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Acceptance Rate (log scale)

V
er

ifi
ca

tio
n 

R
at

e

High−int.  vs. low−int.

Feature−level Fusion

Score−level Fusion

Fig. 10. ROC curves of the proposed approach on FRGC v2.0 (first column) and BU-3DFE (second column). The verification rates combining SþR regions by feature-level

fusion at 0.1% FAR on the two most challenging subsets, ‘‘neutral vs. non-neutral’’ of FRGC v2.0 and ‘‘low-intensity vs. high-intensity’’ of BU-3DFE, are 97.6% and 98.2%

respectively.
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individuals. It is commonly believed that a larger number of classi-
fication categories will make the recognition more challenging.

In this section a comparison of feature-level and score-level fusion
has been performed using our proposed preprocessing steps and
features/representations. However, it is worth emphasizing that the
proposed feature-level fusion outperforms score-level fusion under
our specific preprocessing steps (outlined in Section 3.1) and when
adopting these particular proposed features. The adoption of different
preprocessing steps, features and matching/recognizing algorithms
may lead to a different outcome. Table 3 provides a comparison with



Table 3
Comparison of results for ‘‘neutral vs. non-neutral’’ face recognition using a gallery

of 466 individuals from the FRGC v2.0 dataset.

Method Modalities No. of probes Veri. rates (%)

Wang et al. [23] 3D 1597(466) 97.7

Mian et al. [6] 2Dþ3D 1597(466) 98.3

Berretti et al. [24] 3D 1538(466) 91.4

Mian et al. [22] 2Dþ3D 1597(466) 96.6

Al-Osaimi et al. [44] 2Dþ3D 500(466) 97.9

This paper 3D 1000(466) 97:6

10−3 10−2 10−1 100

0.6

0.7

0.8

0.9

1

False Acceptance Rate (log scale)

V
er

ifi
ca

tio
n 

R
at

e

100 vs. 2400

600 vs. 1900

1200 vs. 1300

1800 vs. 700

2400 vs. 100

Fig. 11. ROC curves for different ratio of training/testing samples on BU-3DFE

dataset.
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existing state of the art techniques under different setups in the case
of ‘‘neutral vs. non-neutral’’ of FRGC v2.0 dataset. The performance of
our feature-level fusion approach outperforms one feature-level
fusion approach proposed in our previous work [22], and another
more recent approach [24]. The same table shows that the approach
in this paper performs slightly less than our approach in [6], and its
performance is very close to the approaches of [23] and our approach
in [44]. The slight superior performance of these approaches may be
attributed to better preprocessing steps [23], the adoption of complex
features/representations [6,23,24] or the advantage of multi-modality
(the combination of 2D and 3D data) [6,22,44]. Instead, our approach
is only based on a simple geometric feature with a single modality
(i.e. 3D only).

4.7. Sensitivity to the ratio of training/testing samples

In this section, we investigate the performance of the proposed
approach in terms of the variation of the ratio of training/testing
samples. For that purpose, we generate four randomly data
subsets from BU-3DFE. We use BU-3DFE (as opposed to FRGC
v2.0 dataset) because it provides the same number of facial scans
per individual. In these four subsets, for the 100 individuals we
vary the number of training samples between 100 (i.e. 1 scan per
individual) and 2400 (i.e. 24 scans per individual). We vary the
number of testing samples from 2400 to 100 for the 100
individuals. The resulting overall face verification rates using
our proposed approach on the four subsets are shown in Fig. 11.

As expected, the proposed approach achieves the lowest
verification rate (54.9% at 0.1% FAR) for the dataset which only
contains 100 training samples and 2400 testing samples. The
second subset which contains 600 training samples and 1900
testing samples provides a relatively higher verification rate of
89.9% at 0.1% FAR. The extremely high verification rate (100%) is
obtained for the dataset which contains 2400 samples for training
and only 100 testing samples. This experimental result clearly
demonstrates that the insufficiency of training samples will challenge
the recognition results of our SVM based 3D face recognition
approach. However, our approach achieves reasonable rates for the
first and also the most challenging dataset, which clearly demon-
strates the robustness of our proposed approach when dealing with
the 3D face recognition problem.
5. Conclusion

In this work we proposed a local geometric feature and SVM based
3D face recognition approach and tested its performance on FRGC
v2.0 and BU-3DFE datasets. A facial scan is divided into three regions
based on their sensitivity to facial expression. Four types of local
geometric features are extracted from the rigid and semi-rigid
regions. The local geometric features that are collected from the
same region are then converted into a region-based histogram
descriptor. Our tests have shown that when applying SVM and the
fusion (at both feature- and score-level) of our region-based histo-
gram descriptors (extracted from the rigid and semi-rigid regions), we
achieve a good recognition performance on both FRGC v2.0 and BU-
3DFE (both above 97.5% at 0.1% FAR verification rates for the most
challenging experimental subsets). Based on experimental tests, one
can make the following two observations. The first is that feature-
level fusion has a better performance compared to score-level fusion
in both of the identification and verification modes. The second one is
that the fusion of the rigid and semi-rigid regions of a 3D facial scan
contains the most reliable discriminating features which are impor-
tant to achieve a robust 3D face recognition in the presence of facial
expressions. To the best of our knowledge, this paper is the first of its
kind to be based on the training of low-level geometric descriptors
and the adoption of a machine learning approach. Our algorithms
have been tested on the two largest public domain datasets, and our
recognition (identification and verification) results, which are com-
parable or even outperform the state of the art one-to-one matching
techniques. We believe that our algorithms can be subject to
improvements. Our facial cropping scheme relies on fixed binary
masks for all the facial scans. In our future work, we will propose a
more precise algorithm to detect and crop facial regions.
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